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Abstract

We find the exact winding number distribution of Riemann–Liouville fractional
Brownian motion for large times in two dimensions using the propagator of
a free particle. The distribution is similar to the Brownian-motion case and
is of Cauchy type. In addition we find the winding number distribution of
the fractal-time process, i.e. the time-fractional Fokker–Planck equation, in the
presence of a finite-size winding center.

PACS numbers: 61.41.+e, 36.20.Ey, 87.15.Cc, 05.40.2a, 02.50.Ey

1. Introduction

Fractional diffusion equations are the basic methods for describing a large class of non-
equilibrium phenomena which show a power-law mean-square displacement. In the normal
case the mean-square displacement is asymptotically linear in time, i.e. 〈x2〉 ∼ t, but for the
anomalous cases it has nonlinear behavior. There are many examples showing anomalous
displacement, e.g. protein dynamics [1], relaxation processes and reaction kinetics of proteins
[2], two-dimensional rotating flows [3], porous glasses [4], intercellular transport [5] and so
on. There are many different kinds of fractional processes but only two of them have more
applications and so have been studied in more detail: fractional Brownian motion (FBM) [6]
and the fractal-time process with the fractional Fokker–Planck equation [7]. Both processes
are non-Markovian and have the power-law mean-square displacement 〈x2〉 ∼ t2H , where H

is a real number, but they are fundamentally different [8].
The above processes can describe anomalous diffusion of a particle in time or diffusion

of a macromolecule; in other words it is possible to look at these processes as models for
dynamics of macromolecules. We have a fractional process which describes the diffusion of
a polymer in a specific medium. One of the most important characteristics of a polymer is
the winding number distribution which is the simplest quantity describing the entanglement
of the macromolecule with point-like molecules or molecules with finite size.

As a simple way to define winding number let us see the process as a two-dimensional
random walker. A two-dimensional random walker that starts from the neighborhood of
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a point in the plane tends to follow a path that wraps around that point, the measure of
the wrapping is given via the winding angle, which is the angle around the reference point
swept out by the walker. Winding angles of paths are of great interest not only from the
mathematical point of view but also because of their application in physics of polymers, flux
lines in high temperature superconductors and the quantum Hall effect [9–11]. The winding
number of Brownian motion was calculated long time ago by Spitzer [12]. He showed that
the distribution of the winding number is of Cauchy type; for some other proofs, see [13–17].
Such a calculation is missing for FBM as a continuous generalization of Brownian motion [6].
In this paper, we will find the exact asymptotic distribution function of winding number of
two-dimensional FBM in the infinite plane. In addition, we will derive the same quantity for
the fractal-time process in the infinite plane with and without the finite-size winding center.

This paper is organized as follows: in the next section following the same method as in [18]
we will find a simple formula similar to Spitzer’s result for the winding number distribution of
FBM. In section 2 we will calculate the same quantity for the fractal-time process; in this case
we will also calculate the winding number distribution in the presence of an obstacle which
is a good model to describe the entanglement of a polymer in the presence of a finite-size
molecule. Finally the last section summarizes our results.

2. Winding number distribution of FBM

Fractional Brownian motion is defined as a continuous stochastic process with zero mean
value and

〈
B2

H (t)
〉 ∼ t2H , with 0 < H < 1. To calculate the winding number of such a process

we will follow [18] which is based on the methods introduced in the papers [12–15] to derive
the winding number distribution of Brownian motion. First we need to have the probability of
finding the particle at r at the time t. This probability is calculated for the Riemann–Liouville
fractional Brownian motion in [19, 20]; the definition of this process is

BH(t) = D

∫ t

0

dτξ(τ )

(t − τ)1/2−H
, (2.1)

where ξ(τ ) is Gaussian, delta correlated noise 〈ξ(t)ξ(t ′)〉 = δ(t − t ′), and D = 1
�(H+1/2)

. This
process is not Markovian and does not have stationary increments; therefore, it is different from
FBM with stationary increments which is more investigated in the mathematical literature.
The Green function of this process satisfies the following diffusion equation,

∂

∂t
GH (r1, r2, t) − 1

2
D2t2H−1∇2

r1
GH(r1, r2, t) = δ(r2 − r1) δ(t), (2.2)

where ∇2
r1

is the Laplace operator acting on r1. The above equation can be considered as
the effective differential equation describing the propagator of FBM (as already proposed in
[21]1). Following [18] one can write the solution of the above equation as

GH (r1, r2, θ, t) = 1

2π

∫ ∞

0

∫ ∞

0
exp

(
−D2t2Hκ2

2

)
cos(μθ)Jμ(κr)Jμ(κr ′)κ dκ dμ, (2.3)

where Jμ(s) is the Bessel function of the first kind and r1 and r2 are the moduli of r1

and r2 respectively. It is possible to look at κ as the eigenvalue of the Laplacian then the
above equation is just a bilinear expansion over the corresponding eigenfunctions. The above
equation is similar, up to the power of t, to the Brownian motion counterpart and can be
checked straightly by putting it into equation (2.2).

1 It seems that this equation is effectively true and gives the right variance, Green’s function and the time dependence
of the survival probability [20]. The survival probability is the long-time asymptotics of the probability Pt that the
FBM does not escape from a fixed interval up to time t.
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It is worth mentioning the exact meaning of the Green function, i.e. GH(r1, r2, θ, t), it
is the statistical weight of trajectories of two-dimensional FBM that start at a point r1 away
from the winding center, here origin, and arrive at another point r2 after time t after winding
angle θ around the origin. If we drop the restriction on the winding around the origin then
we can substitute the integral on μ by the sum and after calculating the sum we will get
the Gaussian distribution function for the trajectories of two-dimensional FBM that start at
a point r1 and arrive at a point r2 at time t; the variance of this Gaussian function is tH ,
see [19, 20]. The reason for including all of the positive μs in equation (2.3) is as follows:
we are trying to calculate the winding number distribution in our problem, so technically θ

is different from θ ± 2πn, n is an integer, putting sum in equation (2.3) will not consider
this difference. However, we should mention that it is also possible to get the true answer by
taking the sum and following Kholodenco’s method for finding winding number distribution
[17]. The other point to mention is: if we also include negative μs in the integral, since
Jμ(s) for small s is singular for μ < 0, we will not get a finite propagator for r1 − r2 → 0.
Equation (2.3) is also consistent with propagators in [17, 19, 20].

To get winding number distribution we should evaluate integral (2.3) for large times. The
integration over κ is truncated at κ2 � 2

D2t2H , and so we can replace the Bessel function by the
first term of its expansion, i.e. Jμ(s) 	 1

�(1+μ)

(
s
2

)μ
. The integration over κ gives

GH (r1, r2, θ, t) 	 1

2πD2t2H

∫ ∞

0
(λH )μ

cos(μθ)

�(1 + μ)
dμ, (2.4)

where λH = r1r2/(2D2t2H ). If we choose r2 = r̄ tH + r1 then for large t we have λH 	 r1 r̄
2D2tH

,
which goes to zero for large times. If we consider just small λH in the integrand then the
integral will be dominated by small μ. The first-order approximation gives

GH (r1, r2, θ, t) 	 1

4πDt2H

ln
(

1
λH

)
(
ln

(
1

λH

))2
+ θ2

. (2.5)

To get the distribution for θ , since λH is small we can use ln λH 	 − ln tH , after
renormalization we have a Cauchy-type distribution

G

(
x = θ

H ln t

)
= 1

π

1

1 + x2
, (2.6)

for t goes to infinity. For H = 1
2 this is the same as Spitzer’s result. The same result is

accessible for the other generalizations of Brownian motion defined by BH(t) = D
∫ t

0
dτξ(τ )

τ 1/2−H ,
see [19], with the same constant D. This process has the same propagator but has a
different autocorrelation [19, 22]. Since we just need the propagator to find winding number
distribution, the winding distribution of this process is the same as the Riemann–Liouville
fractional Brownian motion.

It seems that the same calculation should be tractable for different boundary conditions if
the propagator of FBM could be calculated; of course translational invariance plays a crucial
role in the above argument. The boundary condition corresponding to the problem of walker
in the presence of finite-size winding center is equivalent to solving equation (2.2) for the
cylindrical boundary condition with a zero generating function on the boundary. We have
unfortunately not been able to provide a solution for this problem. However it is possible to
do the calculation for the fractal-time process, fractional Fokker–Planck equation, which is
the main subject of the following section.
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3. Winding number distribution of fractional time process

To define the fractional time process or fractal time random walk we will follow the approach
of [23]. Consider a continuous time random walk so that the waiting time between two
jumps and the length of the jumps come from a special pdf,ψ(x, t). Then one can get the
jump length pdf, λ(x), and waiting time pdf,w(t), just by integrating ψ(x, t) on t and x
respectively. Using ψ(x, t), the fractal time random walk can be described by the following
master equation,

η(x, t) =
∫ ∞

−∞
dx ′

∫ ∞

0
dt ′η(x ′, t ′)ψ(x − x ′, t − t ′) + δ(x) δ(t), (3.1)

where in the process we have taken into account w(t) ∼ t−(1+2H), and the jump’s length
variance is also finite. We are not going to describe all of the interesting properties of this
process; the only thing we need for the rest of the paper is that this process has the following
fractional Fokker–Planck equation [23]:

∂

∂t
GH (r1, r2, t) − D

∂1−2H

∂t1−2H
∇2

r1
GH(r1, r2, t) = δ(r2 − r1) δ(t). (3.2)

In the above formula we used the Riemann–Liouville fractional derivative ∂1−2H f (t)

∂t1−2H =
1

�(2H−1)

∫ t

0
f (τ) dτ

(t−τ)2−2H , with 1/2 < H < 1, see [24]. The corresponding derivative for
0 < H < 1/2 can also be defined by adding the ordinary derivative to the fractional one. Using
the above equation it is easy to find the winding number distribution of this process in two
dimensions in the presence of a disc-like obstacle in the origin which imposes the cylindrical
boundary condition for the above propagator. Following the same steps as in [25] we can find
the solution for the cylindrical boundary condition with the zero generating function on the
boundary. In the Laplace transform space of t, i.e p, we have

∇2
r1
GH(r1, r2, p) − κGH(r1, r2, p) = −αδ(r2 − r1), (3.3)

where κ 	 p2H , and α 	 p2H−1. If we now go to the Fourier space of θ , i.e μ, we will have(
∂2

∂r2
1

+
1

r1

∂

∂r1

)
GH(r1, r2, p, μ) −

(
κ2 +

μ2

r2
1

)
GH (r1, r2, p, μ) = − α

r1
δ(r1 − r2). (3.4)

The solution for the above equation is well known, see for example [25], and has the following
form:

GH (r1, r2, p, μ) 	 Kμ(κr2)

(
Iμ(κr1)Kμ(κR) − Iμ(κR)Kμ(κr1)

Kμ(κR)

)
, (3.5)

where we take r2 > r1, and R is the radius of the disc removed from the plane and the functions
Kμ and Iμ are the modified Bessel functions. To get winding number distribution we need
to integrate over the radial coordinate of the final points. Returning to the θ and t spaces by
inverse Fourier and inverse Laplace transforms we can write

P(θ, t) =
∫ ∞

−∞
dμ eiμθC(μ)

(
Iμ(t−H r1)Kμ(t−HR) − Iμ(t−HR)Kμ(t−H r1)

Kμ(t−HR)

)
, (3.6)

where C(μ) = ∫ ∞
r1

dr2r2Kμ(t−H r2), for r1 close to the border of the obstacle. To get the
inverse Laplace transform we used the steepest descent approximation similar to [25] for large
times which is like substituting κ with t−H after integrating on p space2. The above equation

2 For more detail about the inverse Laplace transform see [18] and for the application of steepest descend method
for inverse Laplace transform see [27].
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is quite the same as equation (2.15) in [25] with just modified κ , so by following Rudnick and
Hu [25] one can argue that the integrand vanishes exponentially at ±∞ for large times. Then
it is possible to calculate the integral by transforming the integration over μ into an integral
around a closed contour in the complex plane as the standard contour integration. The integral
was calculated in [25] for generic small κ , i.e. in the large time limit, and has the following
form:

P

(
x = θ

H ln t

)
= π

4 cosh2
(

πx
2

) . (3.7)

We cannot get the limit of zero winding center from the above equation, to get this limit we
should go back to the original equation of P(θ, t) and take the limit R → 0. It is not difficult
to see that just the function Iμ in the integral will survive and we will get the similar equation
as we found for Riemann–Liouville fractional Brownian motion. It is also possible to get the
same result as (3.7) by following [18], which is the same method but with slightly different
technicality.

4. Discussion and summary

Using the Cauchy distribution that we found for both FBM and fractional time process it is not
difficult to show that 〈einθ 〉 ∼ 1

tnH . It is the same as the result for FBM with autocorrelation
〈BH (t + T )BH (t)〉 = 1

2 ((t + T )2H + t2H − T 2H ), which has stationary increments, at large n
[26]. We should emphasize that our result is not necessarily true for this kinds of FBM which
has different kinds of Fokker–Planck equation. However it seems that the power-law behavior
of the generating function of winding angle at large times for large winding numbers is the
general property of different kinds of fractional Brownian processes. Finally we think that it is
interesting to calculate the same winding distributions for other familiar situations especially
those proposed in [18], such as: paths with fixed endpoints with and without obstacle in
winding center and paths with glued endpoints. These cases as argued in [18] are more related
to the polymer applications.

It is interesting also to calculate the winding number distribution by using other methods,
especially the path integral method, and see the connection to fractional quantum mechanics
as already has been done for the ordinary Brownian motion in [13, 15]. It is also interesting
to verify our formula by numerical studies.

In conclusion we calculated the exact winding number distribution of Riemann–Liouville
fractional Brownian motion for the point-like winding center which is the first result in this
context. We did more general calculation for the fractal time process with the finite-size
winding center and showed that the equation is, up to a parameter H, similar to the Brownian
motion winding number distribution. Moreover we showed that at least for large times and
large winding numbers the generating function of winding number is power law in the absence
of an obstacle.
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